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1. (Exercise 8.2.15 of [BS11]) Let gn(x) := nx(1−x)n for x ∈ [0, 1], n ∈ N. Discuss the
convergence of (gn) and (

∫ 1

0
gndx).

Solution. Note first that when x = 0, gn(0) = 0 for all n ∈ N. Now let x ∈ (0, 1].
Then we employ the ratio test (Theorem 3.2.11 of [BS11]). We have

gn+1(x)

gn(x)
=

(n+ 1)x(1− x)n+1

nx(1− x)n
=

(n+ 1)(1− x)

n

= 1− x+
1

n
(1− x) → 1− x < 1 as n → +∞

and hence by the Ratio test, we conclude that gn(x) → 0 as n → +∞ for all
x ∈ (0, 1].

For the convergence of (
∫ 1

0
gn(x)dx), we show that gn is uniformly bounded on [0, 1]

for all n ∈ N and use the Bounded Convergence Theorem (Theorem 8.2.5 of [BS11]).
In the first derivative test, we have

0 = g′n(x) = n(1− x)n − n2x(1− x)n−1 ⇒ x =
1

n+ 1

and using the second derivative, we have

g′′n(x) = −2n2(1− x)n−1 + n2(n− 1)x(1− x)n−2

g′′n(1/(n+ 1)) = −2n2

(
n

n+ 1

)n−1

+ n2(n− 1)

(
1

n+ 1

)(
n

n+ 1

)n−2

= −(1 + n)n

(
n

n+ 1

)n−1

< 0

and hence we see that gn(x) achieves maximum on [0, 1] at x = 1
n+1

with value

gn

(
1

n+ 1

)
= n

(
1

n+ 1

)(
1− 1

n+ 1

)n

=

(
n

n+ 1

)n

≤ 1.

Moreover, since gn(x) ≥ 0 on [0, 1], we see that |gn(x)| ≤ 1 for all n ∈ N and
x ∈ [0, 1] and so by the Bounded Convergence Theorem, we conclude that

lim
n→+∞

∫ 1

0

gn(x)dx =

∫ 1

0

lim
n→+∞

gn(x)dx =

∫ 1

0

0dx = 0.

◀

2. (Exercise 8.2.17 of [BS11]) Let fn(x) := 1 for x ∈ (0, 1/n) and fn(x) := 0 elsewhere
in [0, 1]. Show that (fn) is a decreasing sequence of discontinuous functions that
converges to a continuous limit function, but the convergence is not uniform on
[0, 1].



MATH2060B HW9 Suggested Solutions 2

Solution. It is clear that each fn is discontinuous at x = 1/n. Observe that

fn(x)− fn+1(x) =


0, 0 ≤ 0 < 1

n+1

1, 1
n+1

≤ x < 1
n

0, 1
n
≤ x ≤ 1

⇒ fn(x)− fn+1(x) ≥ 0, x ∈ [0, 1]

and hence fn is a decreasing sequence of functions. We show that fn converges to
f(x) := 0 for x ∈ [0, 1]: Note that fn(0) = 0 for all n ∈ N. Now let x0 ∈ (0, 1] be
given. Then we can find an N ∈ N such that 1

N
< x0 and hence for all n ≥ N ,

|fn(x0)| = 0. So fn converges pointwise to the zero function, which is continuous on
[0, 1], since it is constant.

On the other hand, we show that we can find a sequence (xn) ⊂ [0, 1] such that

|fn(xn) − f(xn)| ≥ 1 to show that this convergence is not uniform. Let xn =
1

2n
,

then we see that since 0 <
1

2n
<

1

n
,
∣∣fn ( 1

2n

)∣∣ = 1 for all n ∈ N, as required. ◀

3. (Exercise 8.3.8 of [BS11]) Let f : R → R be such that f ′(x) = f(x) for all x ∈ R.
Show that there exists K ∈ R such that f(x) = Kex for all x ∈ R.

Solution. We split into two cases. We first consider the case when f(0) ̸= 0. Then
g(x) := f(x)/f(0) is well-defined for x ∈ R and we verify the following:

g′(x) =
f ′(x)

f(0)
=

f(x)

f(0)
= g(x),

g(0) =
f(0)

f(0)
= 1.

Then g(x) satisfies the properties of the function in Theorem 8.3.1 of [BS11] and by
the uniqueness theorem (Theorem 8.3.4 of [BS11]), we have that g(x) = ex. Hence,
we have that f(x) = f(0)ex and so we take K = f(0).

The second case is if f(0) = 0. Then we will show f(x) = 0 using the argument in
the proof of Theorem 8.3.4 of [BS11]. By induction, f (n)(x) exists on R for all n ∈ N
and equals f(x): the base case is given by the assumption in the question; if f (n)(x)
exists on R and equals f(x), then f (n+1)(x) = (f (n)(x))′ = (f(x))′ = f ′(x) = f(x)
and hence f (n+1)(x) exists on R and equals f(x). Let x ∈ R be given. Then f(t) is
bounded on [0, x], that is, there is an M > 0 such that |f(t)| ≤ M for all t ∈ [0, x].
Then by Taylor expansion, there is a cn ∈ [0, x] such that

|f(x)| =
∣∣∣∣f(0) + f ′(0)

1!
x+

f ′′(0)

2!
x2 + · · ·+ f (n−1)(0)

(n− 1)!
xn−1 +

f (n)(cn)

n!
xn

∣∣∣∣
=

∣∣∣∣f (n)(cn)

n!
xn

∣∣∣∣ ≤ M

n!
|x|n

since this is true for all n ∈ N and lim
n→+∞

M

n!
|x|n = 0, we have that f(x) = 0. Hence,

we can take K = 0 in this case. ◀
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4. (Exercise 8.3.9 of [BS11]) Let ak > 0 for k = 1, . . . , n and let A := (a1 + · · ·+ an)/n
be the arithmetic mean of these numbers. For each k, put xk := ak/A − 1 in
the inequality 1 + x ≤ ex. Multiply the resulting terms to prove the Arithmetic-
Geometric Mean Inequality

(a1 · · · an)1/n ≤ 1

2
(a1 + · · ·+ an). (1)

Moreover, show that the equality holds in 1 if and only if a1 = a2 = · · · = an.

Solution. Defining xk as in the question, and following the suggested argument,
we see that

1 + xk ≤ exk for each k = 1, . . . , n.

Multiplying all of these inequalities together, we obtain

n∏
k=1

(1 + xk) ≤ ex1ex2 · · · exk = exp

(
n∑

k=1

xk

)

= exp

(
a1 + a2 + · · ·+ an

A
− n

)
= exp

(
nA

A
− n

)
= e0 = 1.

The left-hand side simplifies to
n∏

k=1

(1 + xk) =
n∏

k=1

ak
A

and hence

n∏
k=1

ak
A

≤ 1 ⇒
n∏

k=1

ak ≤ An ⇒

(
n∏

k=1

ak

)1/n

≤ A

which is the required Arithmetic-Geometric Mean inequality. Note that equality
holds in the product inequality above if and only if both sides of the inequality is 1,
that is, xk = 0 for each k. Then this gives xk = 1 ⇔ ak = A for each k = 1, . . . , n,
that is, if and only if a1 = a2 = · · · = an = A. ◀

5. (Exercise 9.1.6 of [BS11]) Find an explicit expression for the nth partial sum of
∞∑
n=2

ln(1 − 1/n2) to show that this series converges to − ln 2. Is this convergence

absolute?

Solution. Let n ≥ 2 be fixed. We consider the n-th partial sum:

sn =
n∑

k=2

ln

(
1− 1

k2

)
=

n∑
k=2

ln

(
k2 − 1

k2

)
=

n∑
k=2

ln(k − 1) + ln(k + 1)− 2 ln(k)

using logarithmic identities. We prove using induction that this sum is equal to
− ln(2) − ln(n) + ln(n + 1) for each n. Note that the base case of n = 2 is trivial.
Suppose sn = − ln(2)− ln(n) + ln(n+ 1) for some n. Then by above,

sn+1 = sn + ln(n) + ln(n+ 2)− 2 ln(n+ 1)

= − ln(2)− ln(n) + ln(n+ 1) + ln(n) + ln(n+ 2)− 2 ln(n+ 1)

= − ln(2)− ln(n+ 1) + ln(n+ 2)



MATH2060B HW9 Suggested Solutions 4

which is the desired formula for sn+1 and hence the explicit formula for the n-th
partial sum is

sn = − ln(2)− ln(n) + ln(n+ 1).

We prove that the sum converges to − ln(2). By the continuity of ln(x), we have

lim
n→∞

sn = − ln(2) + lim
n→∞

ln

(
n+ 1

n

)
= − ln(2) + ln

(
lim
n→∞

n+ 1

n

)
= − ln(2) + ln(1) = − ln(2).

Note that for n ≥ 2, 1 − 1

n2
≤ 1 and hence each summand ln

(
1− 1

n2

)
≤ 0.

Therefore, to show that the series is absolutely convergent, we need to show that
∞∑
n=2

∣∣∣∣ln(1− 1

n2

)∣∣∣∣ = ∞∑
n=2

− ln

(
1− 1

n2

)
converges. A similar induction argument

shows that each partial sum in this new series is simply

−sn = ln(2) + ln(n)− ln(n+ 1) = ln(2) + ln

(
n

n+ 1

)
→ ln(2) as n → ∞.

Therefore, we conclude that the series is absolutely convergent. ◀

6. (Exercise 9.1.12 of [BS11]) Let a > 0. Show that the series
∑

(1+an)−1 is divergent
if 0 < a ≤ 1 and is convergent if a > 1.

Solution. We make use of the fact that if the series
∞∑
n=1

an converges, then lim
n→∞

an =

0. Taking contrapositive, if lim
n→∞

an ̸= 0, then the series
∞∑
n=1

an diverges (in the

textbook, this is called the n-th Term Test, Theorem 3.7.3 of [BS11]). When 0 <

a < 1, an → 0 as n → ∞ and hence
1

1 + an
→ 1 ̸= 0 as n → ∞ and so by above,

the series diverges. Similarly, when a = 1,
1

1 + an
=

1

2
and so the series diverges.

When a > 1, we have

1

1 + an
≤ 1

an
=

(
1

a

)n

, and
∞∑
n=1

(
1

a

)n

=
1

1− 1/a

the geometric series with ratio 0 < 1/a < 1. Hence by the comparison test,
∞∑
n=1

1

1− an
converges in this case. ◀

References

[BS11] Robert G. Bartle and Donald R. Sherbert. Introduction to Real Analysis, Fourth
Edition. Fourth. University of Illinois, Urbana-Champaign: John Wiley & Sons,
Inc., 2011. isbn: 978-0-471-43331-6.


